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CALCULATION OF RADIATIVE-CONDUCTIVE 
HEAT TRANSFER IN A SYSTEM CLOSED 
BY A SEMITRANSPARENT ENVELOPE 

V. N. Eliseev UDC 536.3 

A compact analytical solution of the one-dimensional problems of heat conduction is obtained for bod- 
ies of canonical shape with constant thermophysical properties and internal heat sources (sinks), whose 
power is generally coordinate-dependence. The solution includes, as partial cases, numerous known 
and new problems of stationaty and nonstationarv heat conduction, excluding the case of simultaneous 
assignment of second-secotut kind conditions on boundary, surfaces. 

In modern engineering, wide use is made of various devices, which can be treated as a closed or con- 
ventionally closed system bounded by an envelope permeable to radiation. The entire envelope or its separate 
parts can be permeable. In some cases, these envelopes can be made of semitransparent porous or perforated 
materials and are able not only to partially transmit radiation but also to ensure mass transfer. Systems of 
active heat protection, thermally loaded systems which include porous inserts, working sections of  benches of 
radiation heating of structures, etc. are examples of these devices. In the general case, envelopes bounding 
these systems can be multilayer. 

Radiative-conductive heat transfer in the indicated systems is usually calculated by the method of itera- 
tions, assuming the temperature state of all elements of the system at the initial instant of time to be known. 
To simplify the calculation of radiative heat transfer in the system, it is expedient to present the multilayer 
envelope as a conventional surface, the effective optical properties of which are identical to corresponding 
characteristics of the envelope [1]. A solution of the problem of  radiative heat transfer in a multilayer transpar- 
ent medium is presented, in particular, in [2], and a more detailed one is given in [3]. 

The characteristics of the radiation field tbr parts of the system that are tbund on the basis of  methods 
expounded in these works allow calculation of radiative heat transfer in the considered region [4-6]. Refine- 
ment of the results obtained is made by the iteration process and is associated with determination of  the tem- 
perature state of the bodies tbrming the system. 

For the case where the envelope bounding the system and the bodies inside the system can have a 
canonical shape (plate, cylinder, sphere (solid or hollow), rod), one succeeds in obtaining a compact analytical 
solution of a one-dimensional nonstationary problem of heat conduction, which is convenient for an iteration 
calculation of radiative-conductive heat transfer in a closed system. We present the formulation of  the corre- 
sponding boundary-value problem in dimensionless tbrm as 

00 a~  320 b - 3 0 + c 0 + F ( ~ ) ,  

aFo- 
( l )  

= ~1 ; O~lO' (~l) + ~10 (~l) =.fl (Fo), (2) 

= ~2 : %0'  (~2) -'I" 1~2 0 (~2) =.f2 (Fo), (3) 
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F o = 0 :  0 ( { , 0 ) = f ( ~ ) .  (4) 

To improve the convergence of the solution of problem (1)-(4), it is expedient to determine the dimen- 
sionless temperature as the sum of nonstationary t3 -- ,3(~, Fo) and quasistationary 0* = 0"({, Fo) components 
[7] 

0 = 0 + 0".  (5) 

Substitution of (5) into (1)-(4) leads to the following two problems: for determination of a quasistation- 
ary (or stationary) component of the temperature field 

a20* 
b{ ~ *  + c (~) O* + F (~) = 0 ,  

(6) 
a~ ~2 + 

~zto*" (G) + 13~o* (G) =f~ (Fo), (7) 

°t20 (~2) + [320* (~2) =f2 (Fo) 

and for a nonstationary component of the temperature field 

01.B 021,~ 00" 
0Fo = a~  a--5. + h~ a-~ + c (~) o +f(0*),  

1~'11~" (~l) + 1~11~ (~l) = O, 

(8) 

(9) 

(10) 

(Y"20' (~2) + ~2 LB (~2) = O, (11) 

O (~, O) =f(~)  - O* (~, 0) ,  (12) 

where 

f(0*) = -  b0* 
0Fo " 

The value of Fo in (7) and (8) and, in a more general case, also in the function F(~) = F(~, Fo) is 
used as a parameter [81. 

A solution of differential equation (6) with boundary conditions (7) and (8) is obtained in the form 

L V 3 ~  ~ Ol(~ ) II/(~)+ b lb3_~+m2(~)  (p(~), (13) 

where 

L ' 
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b2 = I.f2 (Fo) + [ot2~' (~) + [~21]1 (~)1 H1 (¢) 

L %¢" (~) + [32¢ (¢) 
H2 (~)] ; 

t ,v (¢) + 

fl  (Fo) - [otlq:)' (¢) + ~)tq: ) (~)l H2 (¢) + HI ( ¢ ) ]  • 
b 4 = , 

a l v  (¢) + 131v (¢) lj¢:< 

HI (¢) I 

J 
a~  (p (~) ~¢' (0 - v (0  (p" (~) 

H2 (~) d 
a¢~ ~0 (~) V' (0  - q (~) (P' (~) 

The functions ~(~) and (9(~) form a fundamental system of solutions of a second-order homogeneous 
differential equation (Eq. (6) at F(~) = 0). The form of these functions for some partial cases, which often 
occur in problems of heat conduction, is given in Table 1. In other cases these functions can be found from 
the literature by ordinary differential equations, e.g., [9]. 

For determination of a nonstationary component of temperature, it is convenient to use the method of 
finite integral transtbrmations [8-12]. Taking, for this purpose, an integral transform of the form 

(Fo) = j" p (¢) O (¢, Fo) ~" (~.,,, ¢) de 

of Eq. (9) and initial condition (12), we obtain 

dO (Fo) _ _ X,,O (Fo) +f (0*) ,  (14) 
d(Fo) 

(0) = 9 -  O* (0), (15) 

where 

g2 ~,2 

f ( 0 * ) =  I P (~).f(0*)kO'.  ,FO; 7= I p ({)/(~.)~-(~,. .~)d¢; 

~2 

(0) = I P (%) O* (%, O) ~" (~'n, ~) d%. 

The weight function p(~) is found from the formula 
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T A B L E  1. Express ions  for  the F u n c t i o n s  in  F o r m u l a  (13) 

Shape of a body and coefficients in Eq. (6) 

Plate: ag~ = 1: b~ = c(~) = 0 

Porous plate cooled by liquid: a ~  = 1: 

Gcliql c(~) = 0 
b~ = ~w = Xw ( 1 - y); 

Cylinder (solid or hollow): 

a ~  = 1: b~ = i/~; c(O = 0 

Sphere (solid or hollow): 

a ~  = 1: b~= 2/~" c(~,) = 0 

Homogeneous equation of 
heat conduction 

0 " = 0  

:t:,p , ,  
0 - ~w 0 = 0 

+ ~ 0 " = 0  

Function y(~)  

exp (~w~) 

Straight fin of a variable cross section 
s(o. 

- general case: a ~  = S(I " 

__. dc1)(~) 1 dS(~) 1 c ( ~ ) = - B i  
b~= d~ So" d(~) SO 

Fin (rod) of  a constant cross section: 
a{{ = 1: b~ = 0: c(~) = - (ml)2: 

m = ~]o~H/~mSo 

Fin of triangular or trapezoidal cross 

section with a small apex angle: 

a ~  = 1; b~ = 1: c(~) = -(m/)2: 

m = "~f~m~5 

Round fin of constant thickness 

equal to 28: a ~  = 1: b~ = l/k: 

c(~) = -(m/)2; m =~f~/~.,n8 

a ~ 0 * " +  b~0* '+c(O0* = 0  

0"" - ( m l ) 2 0  * = 0 

t0*" + 0 "  - (ml)20 * = 0 

1 

exp ( -ml  ~) 

lo(2ml~) 

1 , t  
0"" + -;- 0 - (ml)20 * = 0 lo(ml~) 

Function (p(~) 

exp (ml~) 

Ko(2ml~) 

Ko(ml~) 

1 
p = p (~) = exp!  - f l _ _  ( a ~  - bg) d ~ [ .  

J 

In the lat ter  express ion ,  any n u m b e r  w i th in  the range o f  f rom ~l to ~2 is used as the l o w e r  l imit  of  in tegra t ion .  

The  kernel  o f  the integral  t r a n s f o r m  is found  f rom the solut ion o f  the S t u r m - L i o u v i l l e  b o u n d a r y - v a l u e  

p r o b l e m  

- (pk' ) '  + ( q  - K 2 p )  k = 0 ,  ( 1 6 )  

ark" (~) + p~k (~l) = o,  (17) 
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T A B L E  2. Expressions for the Functions in Formula  (19) 

Shape of a body and Equation lbr the kernel 
coefficients in Eq. (16) of  transformationK(~,, ~) Function~(~,, ~) Functionq00~, ~) Note 

k" + K2k = 0 cos (?~) sin ( ~ )  
Plate (monolith or porous): 
p =  l ' p =  l : q = 0  

Cylinder (solid or hollow): 
p = ~ ; p = ~ ; q = 0  

,, 1 k + ~k' +)k2k = 0 J o ( ~ )  Yo(;~) 

Sphere (solid or hollow): 
p = ~z: p = ~-': q = 0 

Fin (rod) of a constant cross 
section:p = 1: p = 1: 
q = (ml)2. ¢02 = ~2 _ (ml)2 

Fin of trianoular or 
trapezoidal'cross section 
with a small apex angle: 
P ~ ~; ~ = (m/) 2 
co z = ~,z _ (m/)2 

Round fin of constant 
thickness: P = ~: P ~  ~: 
q = ~(m/)2; cO 2 = K- - (rot) 2 

k" + ~k' + K2k = 0 

k"+  ¢02k = 0 

~ " +  k' + t0zk = 0 

k" + ~k' + (o2k = 0 

~-°.sjo.5(z~) 

cos (o~) 
cosh ( ~ )  

So(2O)~) 
1o(2~o,/~) 

Jo(~) 
/ o ( ~ )  

sin ( ~ )  
sinh (¢o~) 

Y0(2t04~) 
K0(2e0,/~) 

Yo(O~) 
Ko(o~) 

0) 2 > 0 

0~ 2 < 0  

to2>O 
9 (o -<0  

tO 2 > 0  
¢02 < 0 

(x2k' (~2) + 132 k (~2) = O,  (18) 

where p = a ~ p ;  q = -c (~)p .  
We present the solution o f  Eq. (16) in the form 

(19) 

where ~(k,  ~) and tp(X, ~) is the fundamental sys tem of solutions of  Eq. (16) (Table 2). 

Expression (18) contains three unknown quantities Bl, B2, and K, lbr  determination of which we have 
only two boundary conditions (17) and (18). To eliminate this difficulty, both sides of  (19) can be divided by one 
of  the constants Bl or B 2 and the unnormalized kernel of  the integral t ransform k(K, ~) can be determined accurate  
to an integration constant. This is based on the fact that in the solution of  the problem considered only a normal ized  
kernel is universally used for  the nonstationary_ component  of  the temperature field and the normalization proce-  
dure allows elimination of  the dependence  of  k(X, ~) on the accuracy o f  determination of  k(X, ~,) 

k (~, 4) (20) (~, ~) - - - ,  

where the norm is found f rom the expression 

92 

N = J o (4) k 2 (?~, 4) a~. (21) 

Having divided both sides o f  Eq. (19) by B1 and having used conditions (17) and (18), we find a new 
value of  B2: 

B2 
B2 = =--=  

BI 
a l ~  (K, G) + [31~ (~-, ~t) 

alq~ (k, ~t) + [31q~ (~., ~ )  

(22) 
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and the characteristic equation for determining eigenvalues 

1 
(X2(D' (~'n, ~2) + ]32q ) (~'n' ~2) -- - ~ [[~2~ / (~'n' ~2) + 0~2-~[/ (~n, ~2)]" (23) 

Division of (19) by Bi instead of  B, gives a new value BI = 1/B2, and expression (23) remains con- 
stant. 

Thus, the relation for determination of the unnormalized kernel acquires one of the following forms: 

k 0.., ~) = ~ (~.,, ~) + B~_~ (;% ~) 

or 

k (~'n, ~) = B I ~  (~',,, ~) +q) (~',,, ~),  

where B 2 is found from (2) and BI = I/B2. 
The functions ~0-,,, ~) and q~(~.,, ~), which form the fundamental system of solutions of some widely 

encountered equations (partial cases of Eq. (16)) that are used for determining the kernels of integral transtbrm 
k(~.,, ~) in problems of heat conduction, are given in Table 2. The normalized kernel is round from expression 
(20) using (21). The expressions for the kernels of a finite transform and characteristic equations for determi- 
nation of eigenvalues as applied to partial problems of heat conduction with specific boundary conditions are 
given in tabulated form in [11, 12]. A solution for the transform of the nonstationary component of the tem- 
perature field, which satisfies Eq. (14) and initial condition (15), is obtained in the form 

F 
(Fo) = exp ( -  ~.~ Fo) I):- O* 

t_ 

Using the inversion formula [10], we find 

Fo ] 
c0) + f ?(0*)exp Fo) , F o .  

o 

o c¢, Fo) = CFo) ¢). 
n=-l 

(24) 

A solution of the initial problem (I)-C4) results from the summation of the solutions of quasistationary 
and nonstationary components of the temperature field 

o = o (~, Fo) = O* (~) + 0 (~, Fo) ,  C25) 

where the functions on the right-hand side of (25) are calculated by formulas (13) and (24), respectively. 
The solution obtained contains, in a generalized form, a large class of known [13] and new problems 

of stationary (13) and nonstationary (25) heat conduction for bodies of a canonical shape with constant thermo- 
physical properties and an assigned law of distribution of the internal heat sources (sinks). The solution is par- 
t icularly convenient when in the considered system of  bodies, there are bodies of  various geometry 
simultaneously. 

N O T A T I O N  

0, dimensionless temperature; 0", dimensionless quasistationary or stationary component of temperature; 
O, dimensionless nonstationary component of temperature; ~, dimensionless coordinate; c(~), b~, and a~, coef- 
ficients in the heat conduction equation at the temperature and its first and second derivatives, respectively; 
F(~), known function of the coordinate in the heat conduction equation; oq, c~2, [~1, and ]32, coefficients in gene- 

l l0  



ralized representation of boundary conditions; ft(Fo) and f2(Fo), known functions of time or constants in 
boundary conditions; Fo and Bi, Fourier and Biot numbers; k = k(~.,,, ~) and k(~,n, ~), unnormalized and normal- 
ized kernels of integral transform; ~-n, eigenvalues; S(~) and So, current value of the cross-sectional area and the 
base of a fin, respectively; ~p(~), current value of the surface of convective heat transfer of  a fin; l, fin height 
or wall thickness; c~ and ~-m, coefficients of heat transfer from the surface of  a fin and thermal conductivity of 
its material; H, perimeter of a fin of constant cross section; ~5, half-thickness of a fin; G, specific mass flow 
rate of liquid; qiq, heat capacity of liquid; ~ and 7, thermal conductivity of a porous wall and its porosity, 
respectively. 
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